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Abstract
We generalize the Deutsch–Jozsa algorithm by exploiting summations of the
roots of unity. The generalized algorithm distinguishes a wider class of
functions promised to be either constant or many to one and onto an evenly
spaced range. As previously, the generalized quantum algorithm solves this
problem using a single functional evaluation. We also consider the problem of
distinguishing constant and evenly balanced functions and present a quantum
algorithm for this problem that does not require any initialization of an auxiliary
register involved in the process of functional evaluation and after solving the
problem recovers the initial state of an auxiliary register.

PACS numbers: 0365L, 0365T

1. Introduction

There has been much research to explore the computational power of a quantum computer. The
first example of a problem which can be solved exponentially faster on a quantum computer
than on a classical Turing machine was given by Deutsch and Jozsa [1]. They presented a
simple promise problem that can efficiently be solved without error on a quantum computer
but that requires exhaustive search to solve deterministically without error in a classical setting,
even though this problem can efficiently be handled with a classical probabilistic computer,
provided an arbitrarily small (one-sided) error probability is tolerated.

The Deutsch–Jozsa (DJ) problem [1] is to determine whether a Boolean function f :
Z2n → Z2 computed by an oracle is either non-constant or non-balanced, where f is said to
be balanced if f (x) = 0 for exactly half of the input values and f (x) = 1 for the remaining
half of the input values. Subsequent work by Cleve et al [2] has generalized this algorithm to
distinguish between constant and evenly balanced functions. The original description of the
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n-qubit DJ algorithm [1,2] uses an oracle of the form |x〉⊗|y〉 �→ |x〉⊗|y + f (x)〉 and requires
an n-qubit control register for storing function arguments and a one-qubit auxiliary register for
functional evaluation. The implementation of this algorithm has successfully been performed
using nuclear magnetic resonance (NMR) [3–6]. The refined DJ algorithm [7], which is a
description of the original DJ algorithm using an oracle of the form |x〉 �→ (−1)f (x) |x〉,
removed the necessity of an auxiliary register and has also been implemented by the application
of NMR [8, 9]. A concurrent construction of the interferometer arms for an oracle computing
|x〉 �→ (−1)f (x) |x〉 by one-time evolution of a physical system with arbitrary multi-particle
interactions was proposed in [10]. Noting that for the one- and two-qubit DJ problem to
distinguish functions promised to be either constant or balanced the qubits do not entangle, a
Deutsch-like problem to distinguish between even and odd functions was developed in order
to acquire two-qubit entanglement [11, 12]. To avoid difficulties in the application of NMR,
variations on the function classes of the DJ problem were introduced and it was shown that
by adapting it to one such function class the DJ problem is made solvable without exponential
loss of signal [13]. It is known that in the black-box model the exponential quantum speed-up
obtained for partial functions by Deutsch and Jozsa [1] and by Simon [14] cannot be obtained
for any total function [15]. The generalizations of the DJ problem are related to partial functions
and hence we can still obtain exponential quantum speed-up.

These generalizations of the original DJ algorithm have all retained the original core
summation of powers of −1 to give either exactly zero or one. While each generalization
has expanded the class of functions distinguishable using this core summation, the class of
distinguishable functions is still restricted. In this paper, we modify the core summation and
thus expand the class of distinguishable functions. We do this by noting that for the single
qubit of the original proposal, a balanced function is actually many to one and onto, and the
sum of powers of −1 is actually a sum of the square roots of unity. This raises the possibility
that exploiting summations of the Mth roots of unity might allow a more useful multi-qubit
generalization which distinguishes between functions which are many to one and onto evenly
spaced ranges and those which are constant. This paper generalizes the DJ algorithm to
distinguish between functions promised to be either constant or many to one and onto evenly
spaced ranges more efficiently than is possible using any deterministic classical algorithm.

Most quantum algorithms require initialization setting registers to certain states at start-up.
In [16] it was shown that one pure qubit and a supply of maximally mixed qubits are sufficient
to implement Shor’s quantum factoring algorithm [17] efficiently by the combination of the
phase estimation technique [18] (see also [2]) with the semiclassical Fourier transform [19].
Recently, Chi et al [20] constructed a quantum algorithm that implements an oracle computing
|x〉 �→ e2π if (x)/M |x〉 for f : ZN → ZM by making use of an oracle of the form
|x〉 ⊗ |y〉 �→ |x〉 ⊗ |y + f (x)〉 without setting the auxiliary register (the second register)
to a definite state before the computation. In this paper we consider a generalization of the
DJ problem to distinguish constant and evenly balanced functions [2] and show that when an
oracle computing |x〉 ⊗ |y〉 �→ |x〉 ⊗ |y ⊕ f (x)〉 is employed, where ⊕ denotes the bitwise
addition, the auxiliary register can be of any state at the beginning of the computation. Our
initialization-free algorithm accepts any state (pure/mixed or separable/entangled) as an initial
state of an auxiliary register and its original state is restored at the end of the computation.

Section 2 introduces a generalization of the DJ algorithm to distinguish between functions
which are constant and those which are many to one and have evenly spaced images. Section 3
considers a problem to distinguish constant and evenly balanced functions and is devoted to
the construction of an algorithm that can solve this problem and requires no initialization of
an auxiliary register.
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2. Evenly distributed functions

In this section we formulate a more general version of the DJ problem. We establish that
summations of the Mth roots of unity allow distinguishing constant functions from functions
which are many to one and onto evenly spaced ranges. We also establish the efficiency of the
quantum algorithm compared with classical deterministic algorithms.

A convenient definition of the more general class of functions which are many to one and
onto evenly spaced ranges employs ZN , ZM and ZK forK � M,N . In more detail, the domain
of f , ZN is mapped to K evenly spaced elements in the range ZM with constant separation
(µ = M/K), so each element in the range can be indexed by every element of j ∈ ZK via
µj + t ∈ ZM . Here, t is a possible initial shift less than µ in the ZK assignments. Further,
each element is mapped exactly ν = N/K times. When these conditions are satisfied, we
refer to the function f as evenly distributed. An example for N = 4 and M = 8 might be a
one-to-one function whose image is {1, 3, 5, 7} = {2j + 1 : j ∈ Z4}, so K = 4, the separation
is µ = M/K = 2 and the initial shift is t = 1. Another example for N = 6 and M = 12
might be a two-to-one function whose image is {2, 6, 10} = {4j + 2 : j ∈ Z3}, so K = 3, the
separation is µ = M/K = 4, and the initial shift is t = 2.

Our generalization of the DJ problem for evenly distributed functions (GDJ-ED) is to
determine whether f is non-constant or not evenly distributed. When f is onto, f is an evenly
distributed function if and only if f is a ν-to-one function. Thus if M = K then the GDJ-ED
problem is equivalent to determining whether f is non-constant or non-ν-to-one. We remark
that ν-to-one functions appear in collision and claw problems [21] under the assumption that
f is onto. When K is known we need ν + 1 evaluations of f classically in the worst case in
order to solve the GDJ-ED problem. Unless K is known, 1

2N + 1 evaluations are required in
the worst case before determining the answer with certainty. Thus the GDJ-ED problem has
the same computational complexity as that of the DJ problem.

The required generalization is obtained by modifying the unitary transformation |x〉 �→
(−1)f (x)|x〉 to Ûf : |x〉 �→ ω

f (x)

M |x〉 written in terms of the Mth root of unity denoted
ωM = e2π i/M . For simplicity, we assume that N , M and K are powers of two, that is,
N = 2n, M = 2m and K = 2k for some positive integers n, m and k. We now write Wn to
denote n-qubit Walsh–Hadamard operator. The general algorithm then becomes

WnÛfWn|0n〉 = 1√
N

WnÛf

N−1∑
x=0

|x〉

= 1√
N

Wn

N−1∑
x=0

ω
f (x)

M |x〉

=
N−1∑
y=0

{
1

N

N−1∑
x=0

(−1)x·yωf (x)

M

}
|y〉 (1)

where x · y = ∑n−1
j=0 xjyj for x = ∑n−1

j=0 xj2j and y = ∑n−1
j=0 yj2j (xj , yj ∈ Z2). Let Sy be

the inner summation in the final state of (1). If f is constant, then we obtain

Sy = 1

N
ω
f(0)
M

N−1∑
x=0

(−1)x·y =
{

0 if y �= 0

ω
f (0)
M if y = 0.

If f is evenly distributed, then for y = 0 we have

S0 = 1

K

K−1∑
j=0

ω
jµ+t
M = 1

K
ωt
M

K−1∑
j=0

ω
j

K = 0.
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(a) (b)

Figure 1. Quantum circuits for the GDJ-ED algorithms in (2) employing (a) the n-qubit Walsh–
Hadamard operator Wn and (b) the quantum Fourier transform F . Here, ξ is set to 1 and S′

y is the
inner summation in the state of (3).

Thus if the outcome of the measurement is |0n〉 then f is not evenly distributed and otherwise
f is non-constant.

Here, the properties of summations of the roots of unity allow a generalization of the DJ
algorithm to distinguish between functions promised to be either constant or evenly distributed.
Further, this algorithm requires only a single evaluation of f .

We note that when f is evenly distributed µ can be found by the quantum period-finding
algorithm which is the core of the quantum factoring algorithm [17]. Indeed, the application
of the quantum Fourier transform to the image of f wipes off the initial shift t and changes its
period to M/µ = K , so that with high probability we can determine µ in polynomial time.

When we employ a multi-qubit oracle that performs a functional evaluation by Uf :
|x〉⊗ |y〉 �→ |x〉⊗ |y + f (x)〉, by slightly modifying the initial state of the auxiliary register in
the original DJ algorithm we can solve the GDJ-ED problem. Indeed, we initialize the control
register by |0n〉 and the auxiliary register by |�〉 = F |−ξ〉 = (1/

√
M)

∑M−1
v=0 ω

−ξv

M |v〉 for any
non-zero ξ ∈ ZM where F denotes the quantum Fourier transform [22]. We then proceed with
the following algorithm. (i) Apply Wn ⊗ I. (ii) Apply Uf . (iii) Apply Wn ⊗ I. The quantum
circuit for the GDJ-ED algorithm when ξ = 1 is shown in figure 1(a). Then the state evolves
as follows:

∣∣0n〉⊗ |�〉 Wn⊗I−→ 1√
N

N−1∑
x=0

|x〉 ⊗ |�〉

Uf−→ 1√
N

N−1∑
x=0

ω
ξf (x)

M |x〉 ⊗ |�〉

Wn⊗I−→
N−1∑
y=0

{
1

N

N−1∑
x=0

(−1)x·yωξf (x)

M

}
|y〉 ⊗ |�〉. (2)

Discarding the auxiliary register we have the same final state as in (1) when ξ = 1 and hence
algorithm (2) can solve the GDJ-ED problem by a single evaluation of f .

In the overall procedure we can replace Wn by the quantum Fourier transform. In this
case the final state becomes

N−1∑
y=0

(
1

N

N−1∑
x=0

ω
xy

M ω
ξf (x)

M

)
|y〉 ⊗ |�〉 (3)

and one can easily check that the same result holds with this modified algorithm, whose circuit
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is shown in figure 1(b). For general positive integers N and M the approximate Fourier
transform in [18] can be used.

3. Initialization-free algorithm

In this section we consider a generalized version of the DJ problem formulated by Cleve et al [2]
to distinguish constant and evenly balanced functions. We construct a quantum algorithm that
dispenses with any need for initialization of an auxiliary register and restores the initial state
of an auxiliary register after solving this problem.

A function f : ZN → ZM is said to be evenly balanced if half the output values of f
have parity 0 and half have parity 1. Then the generalized DJ problem for evenly balanced
functions (GDJ-EB) is to determine whether f is non-constant or not evenly balanced [2].
Any classical algorithm for the GDJ-EB problem would require 1

2N + 1 evaluations of f in
the worst case before determining the answer with certainty. Thus the GDJ-EB problem has
the same computational complexity as that of the GDJ-ED problem.

We remark that the GDJ-EB problem can be solved by directly applying the original
DJ algorithm to the composition of the parity function and f . In contrast we construct an
initialization-free algorithm that utilizes a quantum oracle evaluating f only. For simplicity,
we assume that N and M are powers of two, that is, N = 2n and M = 2m for some positive
integers n and m. We prepare an n-qubit control register and an m-qubit auxiliary register. Let
us assume that the state of the auxiliary register is pure and denote its state by

|�〉 =
M−1∑
v=0

αv|v〉 =
M−1∑
v=0

αv

m−1⊗
j=0

∣∣vj 〉
where v = ∑m−1

j=0 vj2j for vj ∈ Z2.
We proceed with the following algorithm. (i) Initialize the control register by |0n〉.

(ii) Apply Wn ⊗ I. (iii) Apply U⊕
f . (iv) Apply I ⊗ σ⊗m

z . (v) Apply U⊕
f . (vi) Apply

I ⊗ σ⊗m
z . (vii) Apply Wn ⊗ I. Here, U⊕

f : |x〉 ⊗ |v〉 �→ |x〉 ⊗ |v ⊕ f (x)〉 is the bitwise
function-evaluation operator computed by the quantum oracle, ⊕ denotes the addition in Z

m
2

and σz is the Pauli spin matrix corresponding to the phase-flip operator. Then during steps (i),
(ii) and (iii) the state of the control and the auxiliary registers evolves as follows:∣∣0n〉⊗ |�〉 Wn⊗I−→ 1√

N

N−1∑
x=0

|x〉 ⊗ |�〉

U⊕
f−→ 1√

N

N−1∑
x=0

|x〉 ⊗
M−1∑
v=0

αv

m−1⊗
j=0

∣∣vj + f (x)j
〉

where f (x) = ∑m−1
j=0 f (x)j2j for f (x)j ∈ Z2. After step (iv) the state becomes

1√
N

N−1∑
x=0

|x〉 ⊗
M−1∑
v=0

(−1)
∑m−1

j=0 vj+f (x)j αv

m−1⊗
j=0

∣∣vj + f (x)j
〉

= 1√
N

N−1∑
x=0

(−1)p◦f (x)|x〉 ⊗
M−1∑
v=0

(−1)
∑m−1

j=0 vj αv

m−1⊗
j=0

∣∣vj + f (x)j
〉

where p ◦ f represents the composition of the parity function p : Z
m
2 → Z2 and f . After

step (v) we have

1√
N

N−1∑
x=0

(−1)p◦f (x)|x〉 ⊗
M−1∑
v=0

(−1)
∑m−1

j=0 vj αv

m−1⊗
j=0

∣∣vj 〉
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and after step (vi) this state changes into

1√
N

N−1∑
x=0

(−1)p◦f (x)|x〉 ⊗
M−1∑
v=0

(−1)2
∑m−1

j=0 vj αv

m−1⊗
j=0

∣∣vj 〉 = 1√
N

N−1∑
x=0

(−1)p◦f (x)|x〉 ⊗ |�〉.

Finally, after step (vii) we obtain

N−1∑
y=0

{
1

N

N−1∑
x=0

(−1)x·y(−1)p◦f (x)
}

|y〉 ⊗ |�〉. (4)

Let Ty be the inner summation in the final state of (4). Then when f is constant we have

Ty = (−1)p◦f (0)

N

N−1∑
x=0

(−1)x·y =
{

0 if y �= 0
(−1)p◦f (0) if y = 0

and when f is evenly balanced

T0 = 1

N

N−1∑
x=0

(−1)p◦f (x) (5)

vanishes. Therefore when f is constant the final state of the control register is |0n〉, whereas
when f is evenly balanced it is orthogonal to |0n〉. Therefore if we measure the control
register discarding the auxiliary register, then we can determine whether f is non-constant or
not evenly balanced: If the outcome of the measurement is |0n〉 then f is not evenly balanced
and otherwise f is non-constant.

When N and M are powers of two, this GDJ-EB algorithm can also solve the GDJ-ED
problem since an evenly distributed function is evenly balanced. In fact, when f is evenly
distributed T0 in (5) becomes

T0 = 1

K
(−1)p(t)

K−1∑
j=0

(−1)p(jµ) = 1

K
(−1)p(t)

K−1∑
j=0

(−1)p(j) = 0. (6)

Here, the second equality in (6) follows from the fact that jµ ∈ Z
m
2 is an m − k left shift of

a k-bit number j ∈ Z
k
2 with following zeros where k = log2 K . For general N and M the

class of evenly distributed functions is not contained in the class of evenly balanced functions
and the second equality in (6) may not hold. Thus the GDJ-EB algorithm cannot solve the
GDJ-ED problem when N and M are not powers of two.

The circuit for the GDJ-EB algorithm is depicted in figure 2. We note that when |�〉 =⊗m−1
j=0

(
αj |0〉 + βj |1〉), the desired phase transform |x〉 �→ (−1)p◦f (x)|x〉 is obtained at step (iii)

if and only if

|�〉 = 1√
M

m−1⊗
j=0

(|0〉 − |1〉) (7)

since U⊕
f (|x〉 ⊗ |�〉) = (−1)p◦f (x)|x〉 ⊗ |�〉 is equivalent to αj + βj = 0 for all j =

0, 1, . . . , m − 1. In this case steps (iv), (v) and (vi), which correspond to the gates in the
dotted box of figure 2, act as the identity operation and hence can be omitted. Thus if we
initialize the auxiliary register by the state in (7) then this simplified circuit can solve the
GDJ-EB problem by a single functional evaluation with certainty. This simplified algorithm
employing the initialization of the auxiliary register was previously constructed by Cleve
et al [2].
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Figure 2. A quantum circuit for the GDJ-EB algorithm: when the auxiliary register is initialized
to the state in (7), the gates in the dotted box have no effect on solving the GDJ-EB problem and
hence can be omitted.

In the GDJ-EB algorithm we can replace every n-qubit Walsh–Hadamard operator Wn by
the quantum Fourier transform [22] as in the GDJ-ED algorithm. If we do so, then the final
state becomes

1

N

N−1∑
x,y=0

ω
xy

M (−1)p◦f (x)|y〉 ⊗ |�〉

which still leads to the same conclusion as in (4), and hence we obtain another GDJ-EB
algorithm. We remark that for general positive integers N and M the approximate Fourier
transform in [18] can be used.

Up to now we have assumed that an auxiliary register is in the pure state. However, this
assumption is unnecessary. In fact, any mixed state is allowed. To be more precise, let A be a
quantum system to be used as an auxiliary register of which state is described by the density
operator ρA. We consider a purification of ρA. There exists a reference system R such that
the compound system AR is in the pure entangled state |�〉AR that gives rise to the given
reduced state ρA = TrR(ρAR). Using the Schmidt decomposition we can rewrite |�〉AR as∑M−1

v=0 αv|v〉A ⊗ |φv〉R . Applying the above algorithm to |0n〉 ⊗ |�〉AR one can see that the
final state becomes a separable state

N−1∑
y=0

(
1

N

N−1∑
x=0

(−1)x·y(−1)p◦f (x)
)

|y〉 ⊗ |�〉AR. (8)

Thus the GDJ-EB algorithm works for any initial state of the auxiliary register. This implies
that we can compose an auxiliary register of any m qubits which are collected from any other
registers even though they are still being used in another computational process and are possibly
entangled with other qubits. Since the GDJ-EB algorithm recovers the initial state of the joint
system AR after extracting the desired relative phase changes in the control register as shown
in (8), the qubits in the temporarily composed auxiliary register can be restored to their original
positions, and hence can continue the suspended computation.

4. Conclusions

In this paper we dealt with two generalizations of the DJ problem, the GDJ-ED and the GDJ-
EB problems, both of which have the same computational complexity as that of the original
DJ problem. In section 2 we presented a quantum algorithm that can solve the GDJ-ED
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problem with certainty by a single evaluation of a given function. The GDJ-ED algorithm
can be constructed from the DJ algorithm by the slight modification of the initial state of the
auxiliary register. The initialization-free GDJ-EB algorithm constructed in section 3 requires
no knowledge of the initial state of an auxiliary register in advance and, what is more, turns the
auxiliary register back to its initial state after solving the GDJ-EB problem. This implies that
any register containing useful information to be preserved for another process can temporarily
be used as an auxiliary register without degrading its state. We remark that if we employ the
initialization-free algorithm in [20], which implements Ûf using Uf and accepts an arbitrary
initial state of an auxiliary register, then we can also construct an initialization-free algorithm
for the GDJ-ED problem. While our initialization-free algorithm does not demand any a priori
information on the auxiliary register and its application does not alter the state of the auxiliary
register, it requires two evaluations of a given function. This is a trade-off. If initialization is
involved then only one functional evaluation is sufficient.
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